Acta Crystallographica Section E

Structure Reports

 OnlineISSN 1600-5368

Liliana Mazur, ${ }^{\text {a }}$ Anna E. Koziol ${ }^{\text {a }}$ and Bozena ModzelewskaBanachiewicz ${ }^{\text {b,c }}$

${ }^{\text {a }}$ Faculty of Chemistry, Maria Curie-Sklodowska University, 20031 Lublin, Poland, ${ }^{\mathbf{b}}$ Faculty of Pharmacy, Medical University, 20081 Lublin, Poland, and ${ }^{\mathrm{c}}$ Faculty of Pharmacy, Medical University, 85067 Bydgoszcz, Poland

Correspondence e-mail:
akoziol@hermes.umcs.lublin.pl

Key indicators

Single-crystal X-ray study
$T=293 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.004 \AA$
R factor $=0.056$
$w R$ factor $=0.170$
Data-to-parameter ratio $=15.1$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

4-(4-Methylphenyl)-3-(4-pyridyl)-4H-1,2,4-triazole

The title compound, $\mathrm{C}_{14} \mathrm{H}_{12} \mathrm{~N}_{4}$, is a disubstituted 1,2,4-triazole derivative. The triazole ring is planar and its dihedral angles with the attached pyridyl and methylphenyl rings are 25.2 (3) and $66.9(3)^{\circ}$, respectively. The crystal structure is stabilized by a number of $\mathrm{C}-\mathrm{H} \cdots \mathrm{N}$ hydrogen bonds and $\mathrm{C}-\mathrm{H} \cdots \pi$ intermolecular interactions.

Comment

1,2,4-Triazole and its derivatives belong to a class of exceptionally active compounds possessing a wide spectrum of biological properties, including anti-inflammatory, antifungal, antiviral (Mahomed et al., 1993; Massa et al., 1992; Mullican et al., 1993), analgesic, anticonvulsant and antidepressant activities (Bradbury \& Rivett, 1991; Sughen \& Yoloye, 1978; Kane et al., 1988). Some of these compounds are also known to exhibit anticancer activities, e.g. anastrozole, $2,2^{\prime}-[5-(1 H-$ 1,2,4-triazol-1-ylmethyl)-1,3-phenylene]bis(2-methylpropiononitrile), and letrozole, 1-[bis(4-cyanophenyl)methyl]-1,2,4triazole (Bonte, 2000; Lønning, 1996; Lønning, 2001). These compounds are playing an increasing role in breast cancer treatment. They are completely selective and well tolerated modern, orally active, non-steroidal aromatase inhibitors used in the therapy of postmenopausal women with advanced breast cancer. Apart from their pharmacological significance, 1,2,4-triazole derivatives exhibit interesting chemical properties. The ability of triazoles to form a bridge between metal ions makes such ligands very important for magnetochemistry applications. Some complexes containing substituted 1,2,4triazole ligands could also be used as optical sensors or molecular-based memory devices (Kahn \& Martinez, 1998; Garcia et al., 1997). In spite of the chemical and medicinal importance of this class of compounds, relatively few crystal structures of 1,2,4-triazole derivatives have been reported so far (Cambridge Structural Database, Version 5.25; Allen, 2002). For these reasons and as a continuation of our studies on 3-(4-pyridyl)-1,2,4-triazole derivatives (Mazur et al., 2004), the crystal structure determination of 3-(4-pyridyl)-4-(4-methylphenyl)-4H-1,2,4-triazole, (I), has been carried out.

(I)

Received 20 October 2004 Accepted 29 October 2004 Online 6 November 2004
(C) 2004 International Union of Crystallography

Printed in Great Britain - all rights reserved

Figure 1
A perspective view of (I). Displacement ellipsoids are drawn at the 50% probability level.

The molecular structure of (I) is illustrated in Fig. 1; selected bond lengths and angles are given in Table 1. The molecule is composed of three planar, but not coplanar, rings: a central triazole ring, a pyridyl ring and a methylphenyl group. The pyridyl and benzene rings are twisted about the external bond to the 1,2,4-triazole ring with respective torsion angles of -152.8 (3) and -107.7 (3) ${ }^{\circ}$. In a closely related compound, 3-(4-pyridyl)-4-phenyl-4H-1,2,4-triazole, (II) (Mazur et al., 2004), the equivalent torsion angles are -130.7 (3) and -121.9 (3) ${ }^{\circ}$, respectively. The dihedral angle between the pyridyl and benzene ring planes is 68.9 (7) ${ }^{\circ}$. The bond distances in (I) are in agreement with those reported for other 1,2,4-triazole derivatives, unsubstituted at position C5 (Chinnakali et al., 1999; Rogers et al., 1990), or those observed in the structure of (II), and are within accepted ranges.

Analysis of the crystal packing reveals the existence of numerous $\mathrm{C}-\mathrm{H} \cdots \mathrm{N}$ (Taylor \& Kennard, 1982) intermolecular hydrogen bonds. A notable feature of this structure is the formation of chains by screw-related molecules along the b axis via $\mathrm{C} 5-\mathrm{H} 5 \cdots \mathrm{~N} 1\left(2-x, y-\frac{1}{2}, \frac{3}{2}-z\right)$ hydrogen bonds, and dimers formed by the inversion-related molecules connected through $\mathrm{C} 3 f-\mathrm{H} 3 f \cdots \pi(1-x, 1-y, 1-z)$ interactions (Fig. 2 and Table 2). Within the dimer, the distance between the centroid of the benzene ring and atom $\mathrm{H} 3 f$ is $2.94 \AA$, whereas the $\mathrm{C} 3 f-\mathrm{H} 3 f \ldots \pi$ angle is 168°. The chains and dimeric pairs are further interlinked by other $\mathrm{C}-\mathrm{H} \cdots \mathrm{N}$ intermolecular hydrogen bonds and $\mathrm{C}-\mathrm{H} \cdots \pi$ (triazole) interactions to form a three-dimensional network. The geometry of these contacts is given in Table 2.

The presence of the 4-methylphenyl substituent in (I), compared with the phenyl derivative (II), causes a different pattern of molecular packing. In the crystal structure of (I), the $\mathrm{C} 5=\mathrm{N} 1-\mathrm{N} 2$ fragment is involved in $\mathrm{C}-\mathrm{H} \cdots \mathrm{N}$ bonds to five neighboring atoms, while in (II) it interacts with two atoms. The N-pyridyl interacts with one molecule in (I) and with three in (II). Structural studies indicate that 3,4-disubstituted and 3,4,5-trisubstituted (Shao et al., 2004; Zhang et al.,

Figure 2
The packing arrangement for (I). Dashed lines indicate hydrogen bonds.
2004) 1,2,4-triazole derivatives have a common fragment available for $\mathrm{C}-\mathrm{H} \cdots \mathrm{N}$ contacts.

Experimental

The title compound, (I), was synthesized by reaction of N3-substituted amidrazone with diethyletoxymethylene malonate, as reported by Modzelewska (1991-1992). Well shaped orange single crystals were obtained by recrystallization from a methanol/ethanol (1:1) mixture at room temperature. The melting point, determined on a Boëtius microscope, was 447 K .

Crystal data

$\mathrm{C}_{14} \mathrm{H}_{12} \mathrm{~N}_{4}$
$M_{r}=236.28$
Monoclinic, $P 2_{1} / c$
$a=7.741$ (2) \AA
$b=7.053$ (1) \AA
$c=21.945$ (4) \AA
$\beta=96.99$ (3) ${ }^{\circ}$
$V=1189.2(4) \AA^{3}$
$Z=4$
Data collection
Kuma KM-4 four-circle diffractometer
$\omega-2 \theta$ scans
Absorption correction: none
2531 measured reflections 2485 independent reflections 1105 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.014$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.056$
$w R\left(F^{2}\right)=0.170$
$S=0.99$
2485 reflections
165 parameters
H-atom parameters constrained

$$
\begin{aligned}
& D_{x}=1.320 \mathrm{Mg} \mathrm{~m}^{-3} \\
& \mathrm{Cu} \mathrm{~K} \mathrm{\alpha} \text { radiation } \\
& \text { Cell parameters from } 56 \\
& \quad \text { reflections } \\
& \theta=6-18^{\circ} \\
& \mu=0.66 \mathrm{~mm}^{-1} \\
& T=293(2) \mathrm{K} \\
& \text { Needle, orange } \\
& 0.51 \times 0.10 \times 0.07 \mathrm{~mm} \\
& \\
& \theta_{\text {max }}=80.3^{\circ} \\
& h=-9 \rightarrow 9 \\
& k=0 \rightarrow 8 \\
& l=0 \rightarrow 28 \\
& 3 \text { standard reflections } \\
& \text { every } 100 \text { reflections } \\
& \text { intensity decay: } 0.7 \%
\end{aligned}
$$

[^0]Table 1
Selected geometric parameters ($\left({ }^{\circ},{ }^{\circ}\right)$.

N1-C5	$1.302(4)$	$\mathrm{N} 4-\mathrm{C} 5$	$1.362(3)$
$\mathrm{N} 1-\mathrm{N} 2$	$1.381(3)$	$\mathrm{N} 4-\mathrm{C} 1 f$	$1.439(3)$
$\mathrm{N} 2-\mathrm{C} 3$	$1.301(3)$	$\mathrm{N} 1 p-\mathrm{C} 6 p$	$1.328(4)$
$\mathrm{C} 3-\mathrm{N} 4$	$1.366(3)$	$\mathrm{N} 1 p-\mathrm{C} 2 p$	$1.331(4)$
$\mathrm{C} 3-\mathrm{C} 4 p$	$1.479(4)$	$\mathrm{C} 4 f-\mathrm{C} 7 f$	$1.500(4)$
$\mathrm{N} 2-\mathrm{C} 3-\mathrm{C} 4 p-\mathrm{C} 3 p$	$-152.8(3)$	$\mathrm{C} 5-\mathrm{N} 4-\mathrm{C} 1 f-\mathrm{C} 2 f$	$-107.7(3)$

Table 2
Hydrogen-bonding geometry $\left(\AA,{ }^{\circ}\right)$.
The center of the aromatic ring is denoted as π.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
C5-H5 $\cdots \mathrm{N} 1^{\mathrm{i}}$	0.93	2.65	$3.522(4)$	157
C5 $f-\mathrm{H} 5 f \cdots \mathrm{~N} 1 p^{\text {ii }}$	0.93	2.93	$3.536(4)$	124
C7 $f-\mathrm{H} 7 f 3 \cdots \mathrm{~N} 1 p^{\mathrm{iii}}$	0.96	2.87	$3.673(5)$	142
C5 $p-\mathrm{H} 5 p \cdots \mathrm{~N} 1^{\text {iii }}$	0.93	2.96	$3.477(4)$	117
C5 $p-\mathrm{H} 5 p \cdots \mathrm{~N} 2^{\text {iii }}$	0.93	2.96	$3.743(4)$	143
C6 $p-\mathrm{H} 6 p \cdots \mathrm{~N} 1^{\text {iii }}$	0.93	2.95	$3.490(4)$	119
C6 $f-\mathrm{H} 6 f \cdots \mathrm{~N}^{\mathrm{iv}}$	0.93	2.98	$3.603(4)$	126
C3 $f-\mathrm{H} 3 f \cdots \pi^{\mathrm{v}}$	0.93	2.94	$3.850(4)$	168
C5 $f-\mathrm{H} 5 f \cdots \pi^{\text {iv }}$	0.93	3.02	$3.820(4)$	145

Symmetry codes: (i) $2-x, y-\frac{1}{2}, \frac{3}{2}-z$; (ii) $1+x, y-1, z$; (iii) $1-x, \frac{1}{2}+y, \frac{3}{2}-z$; (iv) $x, y-1, z$; (v) $1-x, 1-y, 1-z$.

All H atoms were positioned geometrically and treated using a riding model, with a $\mathrm{C}-\mathrm{H}$ distance of $0.93 \AA$ for triazole, pyridyl and benzene H atoms and $0.96 \AA$ for methyl H atoms. The displacement parameters of the H atoms were set at $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})$.

Data collection: KM-4 Software (Kuma, 1998); cell refinement: KM-4 Software; data reduction: KM-4 Software; program(s) used to
solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL/PC (Sheldrick, 1990); software used to prepare material for publication: SHELXL97 and enCIFer (Allen et al., 2004).

References

Allen, F. H. (2002). Acta Cryst. B58, 380-388.
Allen, F. H., Johnson, O., Shields, G. P., Smith, B. R. \& Towler, M. (2004). J. Appl. Cryst. 37, 335-338.
Bonte J. (2000). Eur. J. Cancer, 36, S114.
Bradbury, R. H. \& Rivett, J. E. (1991). J. Med. Chem. 34, 151-157.
Chinnakali, K., Fun, H. K., Senthilvelan, A., Sriraghavan, K. \& Ramakrishnan, V. T. (1999). Acta Cryst. C55, 1136-1138.

Garcia, Y., Koningsbruggen, P. J., Codjovi, E., Lapouyade, R., Kahn, O. \& Rabardel, L. (1997). J. Mater. Chem. 7, 857-858.
Kahn, O. \& Martinez, C. J. (1998). Science, 279, 44-48.
Kane, J. M., Dudley, M. W., Sorensen, S. M. \& Miller, F. P. (1988). J. Med. Chem. 31, 1253-1258.
Kuma Diffraction (1998). KM-4 Software. Version 10.3. Kuma Diffraction, Wrocław, Poland.
Lønning, P. E. (1996). Breast, 5, 202-208.
Lønning, P. E. (2001). Breast, 10, 198-208.
Mahomed, E. A., El-Deen, I. M., Ismail, M. M. \& Mahomed, S. M. (1993). Indian J. Chem. Sect. B, 32, 933-937.
Massa, S., Di Santo, R., Retico, A., Artico, M., Simonetti, N., Fabrizi, G. \& Lamba, D. (1992). Eur. J. Med. Chem. 27, 495-502.
Mazur, L., Koziol, A. E. \& Modzelewska-Banachiewicz, B. (2004). Acta Cryst. E60. In the press.
Modzelewska, B. (1991-1992). Ann. UMCS Sect. AA, 46/47, 67-72.
Mullican, M. D., Wilson, M. W., Connor, D. T., Kostlan, C. R., Schrier, D. J. \& Dyer, R. D. (1993). J. Med. Chem. 36, 1090-1099.
Rogers, R. D., Park, M. G. \& Kevill, D. N. (1990). Acta Cryst. C46, 2218-2221.
Shao, S.-C., Liu, H.-J., Zhang, S.-P., Yang, S., Hao, F.-Y., Li, C.-P., Zhu, H.-L. (2004). Acta Cryst. E60, o722-o723.

Sheldrick, G. M. (1990). SHELXTL/PC. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Sughen, J. K. \& Yoloye, T. (1978). Pharm. Acta Helv. 58, 64-68.
Taylor, R. \& Kennard, O. (1982). J. Am. Chem. Soc. 104, 5063-5070.
Zhang, S.-P., Liu, H.-J., Shao, S.-C., Zhang, Y., Shun, D.-G, Yang, S. \& Zhu, H.L. (2004). Acta Cryst. E60, o1113-o1114.

[^0]: $w=1 /\left[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.096 P)^{2}\right]$
 where $P=\left(F_{o}{ }^{2}+2 F_{c}^{2}\right) / 3$
 $(\Delta / \sigma)_{\max }<0.001$
 $\Delta \rho_{\text {max }}=0.23 \mathrm{e} \AA^{-3}$
 $\Delta \rho_{\min }=-0.24 \mathrm{e}^{-3}$
 Extinction correction: SHELXL97
 Extinction coefficient: 0.0039 (8)

